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Abstract 
 

The power-law series for the poloidal magnetic flux function, up to the third-order terms, 
are presented for the case where two nulls of the poloidal magnetic field are separated by 
a small distance, as in a snowflake divertor. Distinct from the earlier results, no 
assumptions about the field symmetry are made. Conditions for the realization of an exact 
snowflake are expressed in terms of the coefficients of the power series. It is shown that, 
by a proper choice of the coordinate frame in the poloidal plane, one can obtain efficient 
similarity solutions for the separatrices and flux surfaces in the divertor region: the whole 
variety of flux surface shapes can be characterized by a single dimensionless parameter. 
Transition from a snowflake-minus to snowflake-plus configuration in the case of no 
particular symmetry is described. The effect of the finite toroidal current density in the 
divertor region is assessed. 

 
I. Introduction 

 
High heat loads on the plasma-facing components of tokamak divertors impose 

serious constraints on achievable performance of future tokamak-based reactors [1, 2]. 
One way of mitigating these problems may be transition to a second-order null of the 
poloidal magnetic field instead of a traditional first-order null. In other words, not only 
the poloidal field (PF), but also its first spatial derivatives would become zero. As the 
separatrix for the second-order null acquires a characteristic hexagonal form (Fig 1a), this 
configuration was called “a snowflake divertor” [3]. 

Potential advantages of the snowflake configuration stem from the fact that the 
poloidal flux expansion near the null-point becomes significantly larger than in the 
standard X-point divertor, the connection length from the midplane of the scrape-off-
layer to divertor plates increases, and the radiative losses from the low-field zone become 
larger. In addition, the snowflake configuration may provide improved control over edge-
localized modes via increased magnetic shear just inside the separatrix. These and other 
favorable features of the snowflake configuration have been studied in Refs. [3-8]. The 
snowflake has already been created on the TCV tokamak at Lausanne [9] and on the 
NSTX spherical torus at Princeton (see first brief announcement in Ref. [10]). 

Other ways of reducing divertor heat loads include radiative divertors exploiting 
puff-and-pump techniques [11], Super-X divertors based on the significant increase of the 
major radius of the strike point [12], and the use of lithium coatings on the plasma-facing 
components [13]. These approaches will not be considered in our paper which is focused 
on the snowflake configuration. 

Creating a second-order null requires specific adjustment of the currents in 
poloidal field (PF) coils. If the currents in PF coils are somewhat different from the 
“ideal” distribution, the exact snowflake configuration is replaced by a more complex 
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field structure. In Ref. 3, the resulting configurations were named “snowflake-plus” and 
“snowflake-minus”, relating this transition to the magnitude of the current in PF coils 
(Fig.1 b,c). Both “plus” and “minus” configurations were identified in the 
aforementioned TCV experiment [9]. 

The poloidal field considered in Ref. 3, had a symmetry plane, as in Fig. 1. In this 
case, the snowflake-minus configuration was formed by two closely-spaced first-order 
nulls lying on the separatrix, whereas in the snowflake-plus configuration there remained 
one first-order null on the main separatrix. In Refs. [3, 5] it was shown that, if the 
deviation of the currents from the “ideal” distribution remained modest, the resulting 
configurations still maintained all the favorable properties of the exact snowflake.  

In Ref. [7], it was shown that creating a snowflake (or near-snowflake)  
configuration in a particular tokamak, with given locations of PF coils, can be reached by 
merging (or near-merging) of two PF nulls by the proper adjustment of currents.  

In this paper we generalize the analysis of Refs. [3, 5] to the geometries that do 
not possess any particular symmetry, as this more general situation is what is usually 
encountered in real tokamaks. Following an approach discussed in Refs. [3, 5], we use 
the power series expansions to represent the poloidal magnetic field in the area near the 
magnetic field null(s). The toroidicity effects are retained to the order consistent with the 
accuracy of the expansions. We produce general characterization of the magnetic field 
configuration, including the location of the nulls, orientation of the branches of the 
separatrix, and effects of the finite current density in the divertor region. The results can 
be used for a rapid assessment of possible PF structures in tokamaks, determining the 
location of the strike points, and evaluating poloidal flux expansion. 

 
II. Basic equations and orderings 

 
We consider toroidally-symmetric devices, where position of the point in the 

poloidal plane can be characterized by two components of cylindrical coordinates, r and z 
(Fig. 2). To analyze the field in the vicinity of the expected null (or two closely separated 
nulls), we introduce the coordinate x, which is small in the domain of interest. The major 
radius of the origin is R, and r=R+x. The coordinate z is also small in the divertor zone. 
The scale for the variation of the poloidal field on the global scale is the minor radius a, 
and we base our analysis on the inequalities  

! 

| x |,| z |<< a < R . 
We introduce poloidal flux function Φ(x,z) so that 
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and 
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" # B = 0 . With a standard assumption that the current density in the area of interest 
is negligibly small, this flux function has to satisfy Laplace equation 
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Here we haven’t used yet the assumption of the smallness of x and z. 
As x and z are small compared to the minor radius, we now expand 

! 

" in x and z 
up to the third order terms. The zeroth-order term can be dropped, as the field defined by 
Eqs. (1) is proportional to derivatives of 

! 

". Then, we have: 
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We used symbols l, q and c for an easier identification of the corresponding terms as 
linear (l), quadratic (q), and cubic (c).  

Before substituting these expressions to Eq. (2), we rewrite it as: 

! 
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#$

#x
+ (R + x)

# 2$

#x 2
+ (R + x)

# 2$

#z2
= 0       (4) 

We have now to guarantee that the terms of the zeroth and the first order in x,z in the 
l.h.s. are zero (retaining higher order terms is possible, but they are small if we do not 
deviate too strongly from the vicinity of the origin; say, not further than 10-20% of the 
minor radius). Substituting Eq. (3) into (4) and setting the zeroth and the first order terms 
to zero, we find 3 conditions which are satisfied for any field: 
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The presence of the parameter R is related to its presence in Eq. (1) for the magnetic field 
and does not mean that the terms not containing R are automatically smaller than others. 
In the general case, where one does not adjust currents in a particular way needed to 
create an exact snowflake, one has l~qR~cR2. 

The coefficients c1-4 are determined by the global geometry of the plasma. As 
shown in Refs. [1-3], by the order of magnitude they are 

! 

c
1"4 ~ RBpm /a

2         (8) 
where Bpm  is the poloidal magnetic field strength on the plasma boundary at the 
midplane, and a is the minor radius. 

Expressions for the magnetic field, up to the 2nd order terms, are: 
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To have a second-order null coinciding with the origin, one has to take  
  

! 

l
1

= 0,l
2

= 0         (11) 
(the condition that the magnetic field at the origin is zero), and 

  

! 

q
2

= 0,q
3

= 0          (12) 
(the condition that the first derivatives of the magnetic field are zero; note that, according 
to Eq. (5), the condition q1=0 is then satisfied automatically). In other words, creating an 
exact snowflake configuration at the desired point requires imposing 4 constraints on the 
poloidal currents (the result presented in Refs. 3-5). Creating the first-order (standard) 
null would require imposing of only two constraints (11). 

Consider now a case where conditions (11) and (12) are not exactly satisfied, but 
the terms l and q are small. If the latter is true, then we will have an approximate (or, in 
some cases, exact) snowflake in the vicinity of the origin. The magnetic configuration in 
this case is characterized by 9 parameters (two l’s, three q’s and four c’s). Equations (5)-
(7) allow one to eliminate 3 parameters, leaving therefore 6 free parameters. 
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For l and q small, the action occurs in the zone of small x and z: x,z~εa, where we 
have introduced a small parameter ε<<1. By inspecting Eq. (3), one sees that the ordering 
of the coefficients l and q is: 

! 

l ~ "2a2c ,   

! 

q ~ "ac         (13) 
The distance between the poloidal field null(s) and the origin is ~εa. 
 Out of 9 coefficients entering Eqs. (9), (10), we choose as “external” ones the 
following 6: l1, l2, q2, q3, c1 and c4. The other three parameters are then determined from 
Eqs. (5) – (7): 
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The last terms in the r.h.s. of these expressions contain a small parameter 

! 

"a /R  compared 
to the first terms, and we will neglect them. So, we use the following expressions: 
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Note that the toroidicity effects dropped out of our analysis; these effects appear only in 
the order 

! 

"a /R ; their consistent account would require retaining the fourth-order terms in 
the expansion (4). 

With these approximations made, we get from Eqs. (9), (10):  

  

! 
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III. Nulls, flux surfaces, and asymptotes  

 
 We start from identifying the position of PF nulls, i.e., from solving a set of 
equations Bx=0, Bz=0. Simple but lengthy calculations presented in Appendix, lead to the 
following result for the location of two field nulls:  
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and 
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In the case where both P and Q are zero, the two roots (x1, z1) and (x2, z2) merge. 
According to a consideration presented in Ref. 7, this gives rise to an exact snowflake. 
Unless conditions (11), (12) are satisfied, this snowflake will not be situated in the origin, 
but rather in the point x=ξ, z=ζ.   

As mentioned in Ref. 3, the exact snowflake is topologically unstable. This means 
that even infinitesimal change of the system parameters leads to its splitting into 
configuration with two PF nulls (albeit separated by a small distance if perturbations are 
small). To contrast this to an ordinary first-order X-point, we note that, for a small change 
of parameters, the null just slightly moves, but the general shape of the separatrix does 
not change.  
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One special case of such a splitting of a snowflake configuration is the one where 
the two nulls end up lying on the same separatrix (like in Fig. 1 c). As, in a symmetric 
case, this configuration would correspond to smaller-than-optimum current in the divertor 
coils [3], it was called “a snowflake-minus.” In some sense, this configuration is 
analogous to a double-null divertor [14], although the two nulls are now situated not in 
the upper and lower parts of the tokamak and separated by a distance of a meter or so, but 
close to each other, within less than ~10 cm. One can show (we skip this simple 
derivation) that the configuration with two nulls on the same separatrix is realized if   

  

! 

Q =
3

2
P, P < 0 .        (21) 

The snowflake-minus configuration is also topologically unstable in the sense that the 
infinitesimal change of the plasma parameter leads to a configuration where the nulls lie 
on two different separatrices.  

The distance between the nulls is, in the most general case, 
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  Now we discuss the shape of the flux surfaces. We use a flux function that 
accounts for conditions (15): 
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At large x and z, Eq. (23) determines the shape of the asymptotes for the separatrix. 
Equation characterizing the tangents to asymptotes in the x,z plane is: 
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t " z / x .      (24) 
This asymptotes are a good representation os separatrices at the distances exceeding the 
distamnce between the nulls but still small compared ot the minor radius. 
 Equation (24) always has three real roots, corresponding to three asymptotes. One 
can show that these three asymptotes are separated by 120 degrees (i.e., when one 
considers both positive and negative x, there are 6 rays separated by 60 degrees). 
Conversely, by specifying the orientation of the ray, one can find the ratio c1/c4: 
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The parameter t is related to the angle α between a ray in the first quadrant and axis x:  
  

! 

t = tan" ,         (26) 
see Fig 3a. Due to the presence of 6 rays equidistant in α, the range of α can be chosen as 

! 

0 <" # $ /3.  
 Obviously, by rotating the (x, z) frame, one can always orient the axis z so that it 
would become a bisector for the asymptotes 1 and 2  (Fig. 3 b). This orientation 
corresponds to 

! 

" = # /3, so that c1=0. We will also identify the confinement region as the 
region lying between two upward-pointing asymptotes (shaded region in Fig. 3b) and call 
the branches of the separatrix highlighted in red in Fig. 3b the “main separatrix.”  

Under condition c1=0, expressions for ξ, ζ, P and Q are greatly simplified. We 
get: 
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In what follows, we assume that c4>0. This choice of the sign corresponds to the 
following convention regarding the magnetic flux Φ: it is positive well inside the plasma 
confinement region. The flux function, after the just described rotation of the frame, 
becomes  
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The rotation, obviously, leads to a re-definition of the coefficients in this 
expansion (i.e., the coefficients l and q in Eq. (29) are different from those in Eq. (23)), as 
well as re-definition of the coordinates x and z, but, for brevity, we retain the old notation. 

Consider the situation discussed in Refs. [1, 3], where the system was assumed to 
have a symmetry plane x=0. This symmetry corresponds to the absence of the terms odd 
in x in Eq. (29), i.e. to l1=0, q2=0. Equation (28) shows that exact snowflake will then be 
produced if  
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and will be situated at 

! 

z = "
q
3

3c
4

. The shape of several flux surfaces for q3=0 is shown in 

Fig. 4a.  
If condition (30) is violated, one can have two qualitatively-different cases. The 

case  
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l
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q
3

2

3c
4
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corresponds to a “snowflake-plus” configuration, where only one first-order null remains 
on the main separatrix (Fig. 4 b), whereas the case  

! 

l
2

>
q
3

2

3c
4

         (32) 

corresponds to a “snowflake-minus” configuration, with two nulls on the main separatrix 
(Fig. 4c). 

On the other hand, if the system does not possess a symmetry plane, possible 
deviations from the exact snowflake lead to the formation of more complex 
configurations that we discuss in Sec. IV.  
 

IV. Similarity properties 
 

We have shown that, by a proper rotation of the coordinate frame, one can always 
orient the confinement region in such a way that the axis z will form equal angles with 
the separatrices limiting the confinement region, as shown in Fig. 3 b. [An orientation 
with the confinement region above the divertor is typical for most of tokamaks.] After 
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that, by moving the origin, one can always put it into that of two nulls that lies on the 
main separatrix. The fact that one of two nulls is situated in the origin, automatically 
means that l1=l2=0. [The translation of the coordinate system will, again, lead to the 
redefinition of coefficients q and coordinates x and z, but we, again, keep the notation 
unchanged.] After that, one can easily show that the expression for the coefficients q2 and 
q3  can be expressed in terms of the position of the second null (which we denote by 
upper-case X and Z), and the overall expression for the flux function (29) becomes: 
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We note that the coefficient c4 is determined by the global structure of the 
magnetic field and is not affected by variation of the field in the divertor region, the 
variation described by the location of the second null. We therefore come to a conclusion, 
that most general shape of the snowflake flux-surfaces in the divertor region can be fully 
characterized by only two parameters, X and Z, having a simple geometrical sense 
(location of the second null). The poloidal magnetic field in this zone, aside from the 
normalizing factors, is also fully characterized by these two parameters: 
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 The main separatrix, the one that passes through the origin, corresponds to Φ=0, 
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The separatrix passing through the second null is determined by equation 
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The r.h.s. of this equation is determined by substituting x=X, z=Z to the l.h.s. One can 
relate these two parameters to the general set of the coefficients entering expansion (23). 
An example of the separatrices and nearby flux surfaces for the cases X=1, Z=-0.2; X=1, 

! 

Z = " 3 ; X=0.2, Z= -1 is presented in Figs. 5 a-c.   
 The flux surfaces adjacent to the separatrices can be characterized by the 
difference δΦ of the flux function on a given flux surface from its value exactly on the 
separatrix. The parameter δΦ characterizes the distance Δ between the flux surface and 
the separatrix in the tokamak midplane.  According to Eq. (8), by the order of magnitude, 

! 

"# ~ RBpm$ . Then, using Eq. (33), one finds that the equation for the flux surface 
adjacent to the main separatrix is  
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where C>0 is a dimensionless coefficient of order 1, and the sign is chosen in such a way 
that positive Δ corresponds to the area just outside the separatrix. The analogous  
equation should be used for the flux surfaces adjacent to the second separatrix, with Δ 
measured from this second separatrix in the midplane.  
 Instead of X and Z, one can alternatively characterize the magnetic field by two 
other parameters, the distance D between the nulls, and the angle 

! 

"  formed by the 
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horizontal axis and the line connecting the nulls (Fig. 5b), and measured towards the 
lower half-space, so that  

! 

X = Dcos" ,  

! 

Z = "Dsin#        (39) 
As the null lying on the main separatrix does, due to our choice of the origin, coincide 
with the origin, we have to assume that 

! 

" > 0  (i.e., the second null lies below the 
horizontal axis). The parameters D and 

! 

"  can be expressed through the input parameters 
l, q, c in Eq. (3), but we do not present these lengthy expressions here. 
 Using Eqs. (36)-(37), and introducing dimensionless variables 

! 

˜ x = x /D, 

! 

˜ z = z /D , 
one finds equations characterizing the shape of the separatrices by just one parameter, 
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"  
(up to a scaling factor D): 
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This remarkable self-similarity is of course a consequence of the power-law 
representation of the flux function up to the terms of the 3rd order. The nearby flux 
surfaces can be obtained by adding to or subtracting from the r.h.s. of Eqs. (40), (41) 
some small number δ.  
 Our results show that the parameter 

! 

"  controls transition between two very 
different divertor configurations. If one starts with 

! 

" =0, one obtains a “symmetric 
snowflake-minus”, like the one shown in Fig. 4 c. When 

! 

"  is in the range 0<

! 

" <π/3, we 
have a configuration that can be called an “asymmetric snowflake-minus”. It is 
characterized by the presence of two nearby separatrices. A significant plasma volume is 
formed near the bottom of the confining region (zone marked by the number 1 in Fig. 5a). 
The presence of this zone would increase the radiative losses from the plasma on its way 
from the outer SOL to the strike-point 2 in Fig. 5a. For the case where the distance 
between the separatrices is less than the midplane SOL thickness, significant part of the 
plasma would reach the strike point 3. This would help in reducing the heat flux on the 
divertor plates. The distance 

! 

"
1,2

 between two separatrices in the midplane is controlled 
by the value of 

! 

" . According to Eqs. (38)-(41), 

! 

"
12

=
D
3
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2Ca
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For a given D, the maximum distance between the separatrices is reached at 

! 

" =π/6. For 

! 

" >π/6, the distance decreases, and, at 

! 

" =π/3 becomes zero (Fig. 5b). This is just a 
rotated symmetric snowflake-minus configuration of Fig. 4c. For larger values of 

! 

" , we 
obtain a configuration which can be called an “asymmetric snowflake-plus“  (Fig. 5c).  
Here, the confinement region is surrounded by a single separatrix. For 

! 

"  approaching 
π/2, one recovers a symmetric snowflake-plus.  The properties of the latter have been 
studied in great detail in Refs. [3, 5].   

For π/2<

! 

" <π, one recovers all these results, but with the second null situated to 
the left of the vertical axis. [The zone 

! 

" >π is not allowed by our convention that the 
confinement region is situated above the horizontal axis, and that the origin is situated on 
the main separatrix.] 

The asymmetric snowflake-minus configuration can be likened to imbalanced 
double-null divertor, with one null situated near the bottom and the other near the top of 



 9 

the device. The advantage of the asymmetric snowflake-minus configuration is that the 
overall expansion of the magnetic field is stronger (due to the proximity to an exact 
snowflake), and that control over the mutual location of two closely-separated nulls may 
be simpler than in the case of the nulls separated by a few meters. 

 
V. Finite current density in the divertor region 

 
In the analysis above, we neglected the toroidal plasma current in the divertor 

region and used condition 

! 

" # Bp = 0 that lead to Eq. (2). Although the divertor current is 
typically indeed small [15-18], it is desirable to have some more quantitative measure of 
its possible effects. For the symmetric snowflake-plus geometry this has been done in 
Ref. [4]; here we consider a more general asymmetric case. We use the same general 
approach as in Ref. [4]: we surround the magnetic field null situated on the main 
separatrix by a circle of a radius small compared to the plasma minor radius a, but 
sufficiently large to enclose the area of both magnetic field nulls. We assume that the 
plasma current in the area outside this circle is included in the currents that determine the 
magnetic field inside the circle; in other words, we assume that their contribution is 
included in the coefficients l, q, c. In the absence of the current inside the circle, we can 
use our previous analysis, as then Eq. (2) is applicable in the area of interest. If, however, 
the toroidal plasma current inside the circle is finite (albeit small), we have to replace the 
null it in the r.h.s. of Eq. (2) by the term proportional to the current density.  

Here we consider the simplest case of a uniform toroidal current density jd (the 
subscript “d” stands for the “divertor”). Then, the change of the flux-function (39) would 
simply consist in the appearance of an additional term   

! 

"# = $
%jd

c
x
2 + z2( ),        (43) 

where c (without subscripts) is the speed of light. For our convention that c4>0, the 
positive sign of jd corresponds to the divertor current flowing in the same direction as the 
plasma current. The equation for the flux surfaces becomes  

! 

" = c
4

3Z

2
x
2 + 3Xxz #

3

2
Zz

2 # 3x 2z + z3
$ 

% 
& 

' 

( 
) #µa x 2 + z2( )

* 

+ 
, 

- 

. 
/    (44) 

Here, according to Eq. (8),  

! 

µ = K
jd

j 
,         (45) 

where 

! 

j  is an average over the poloidal cross-section plasma current density and K is a 
dimensionless coefficient of order unity determined by the details of the current 
distribution in the bulk plasma. The parameter µ is typically quite small, less than 0.05. 
 The effect of the divertor currents on the shape of separatrices in the case of the 
asymmetric snowflake-minus (analogous to that shown in Fig. 5a) is illustrated by Fig. 6. 
Panel “a” on this figure corresponds to the distance between the nulls approximately 
equal to 0.05a and no current in the divertor (µ=0). On panel “b”, we assume that µ=0.05; 
the general shape of the separatrices does not change significantly compared to the case 
of no divertor current. More-or-less significant changes appear when µ exceeds 0.075 
(panel “c”). At µ>0.09, the structure of the separatrices becomes quite different, with an 
island of closed flux surfaces formed near the origin. This new configuration is illustrated 



 10 

by Fig. 7d, where µ=0.1.  Similar transformations occur for the snowflake-plus 
configuration. The corresponding results can be found in Ref. 4 .  
 

VI. Discussion 
 
 We derived equations describing the magnetic field of a snowflake divertor in the 
local approximation, in the vicinity of the second-order null (or the two closely-spaced 
first-order nulls). Expansion up to the terms of third order in distance is shown to 
characterize the system with accuracy up to the terms ~ε , the distance between the nulls 
divided by the minor radius the minor radius.  

Simple algebraic relations have been obtained that relate the coefficients of the 
power-law representation of the flux function and location of the magnetic field nulls. 
General characterization of the shape of the separatrix, including its asymptotes, has been 
presented.  
 It is shown that the shape of the flux surfaces, aside from trivial transformations 
related to translations and rotations of the coordinate frame in the poloidal plane, can be 
characterized by a single parameter. There are four topologically-different configurations 
possible: an exact snowflake, an exact (symmetric) snowflake-minus, both of which are 
topologically-unstable, a snowflake-plus, possibly asymmetric, and an asymmetric 
snowflake-minus. Topological instability of the first two configurations means that the 
infinitesimal change in the divertor currents leads to their transition to one of the two 
stable configurations.   
 The asymmetric snowflake-minus configuration has an interesting property: it 
allows one to split a strike point on the outer separatrix into two strike points, thereby 
reducing the heat load by the factor of ~2.  
 Effects of finite toroidal current density in the vicinity of nulls is analyzed based 
on a simple model of a uniform current. A conclusion is drawn that the current density 
has to be quite high in order to change the overall magnetic field structure in the divertor 
region.  
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Appendix 
 

By multiplying Eqs. (16) and (17) (with Bx=0, Bz=0) by coefficients c1 and c4 , 
adding Eq. (16) to Eq. (17) and subtracting Eq. (16) from Eq. (17), we find an equivalent 
set of equations for the magnetic field nulls:  

  

! 

l
2
c
4
" l

1
c
1

+ 2 q
2
c
4

+ q
3
c
1( )x + 2 q

3
c
4
" q

2
c
1( )z " 3 c

1

2 + c
4

2( ) x 2 " z2( ) = 0   (A1) 

  

! 

l
2
c
1

+ l
1
c
4

+ 2 q
2
c
1
" q

3
c
4( )x + 2 q

3
c
1

+ q
2
c
4( )z " 6 c

1

2 + c
4

2( )xz = 0   (A2) 
These are two hyperbolas in the x,z plane. By introducing an offset 

! 

",#  according to 
  

! 

x = " x + # ,   

! 

z = " z + # ,        (A3) 
with  
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! 

" =
q
3
c
1
+ q

2
c
4

3 c
1

2 + c
4

2( )
, # =

q
2
c
1
$ q

3
c
4

3 c
1

2 + c
4

2( )
,      (A4) 

one can eliminate linear terms in Eqs. (A1), (A2) and reduce these equations to a 
canonical form: 

  

! 

" x 
2
# " z 

2
= P ,         (A5) 

 
  

! 

" x " z = Q .         (A6) 
Here 

  

! 

P =
l
2
c
4
" l

1
c
1

3 c
1

2 + c
4

2( )
+ # 2 " $ 2 ,   

  

! 

Q =
l
2
c
1

+ l
1
c
4

6 c
1

2 + c
4

2( )
+ "# .    (A7) 

 The set of equations (A5), (A6) has two real solutions, 

  

! 

" x 
1,2

= ±
P

2
+

P
2

4
+ Q

2 ;  
  

! 

" z 
1,2

= ±(signQ) #
P

2
+

P
2

4
+ Q

2  .  (A8) 

Note that the magnetic field nulls in the initial coordinate frame (x,z) are off-set in 
accordance with Eq. (A3), so that 

  

! 

x
1,2

= " x 
1,2

+ # ;   
  

! 

z
1,2

= " z 
1,2

+ #        (A9) 
In the case where both P and Q are zero, these solutions merge. According to a 
consideration presented in Ref. 7, this gives rise to an exact snowflake. Unless conditions 
(11), (12) are satisfied, this snowflake will not be situated in the origin, but rather in the 
point (x=ξ, z=ζ).   
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Fig. 1 A 3-wire model of the poloidal field: a) an exact snowflake, b) snowflake-plus; c) 
snowflake-minus. In this model the configuration is symmetric with respect to a vertical 
coordinate axis. The present study is concerned with the zone near the origin (a dashed 
circle in panel c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The coordinate frame. The dashed line represents the tokamak major axis. The 
origin is deliberately shown as different from the null-point, to emphasize that we assume 
only that the magnetic field null is situated near the origin, but not necessarily in the 
origin. 
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Fig. 3  Asymptotes of the separatrices. Their orientation is independent on the details of 
the field structure near the origin. To emphasize this fact , the central part is not shown. 
In Fig b, the frame is turned in such a way, as to put the confinement zone (shaded) into 
the upper-most segment. 
 
 

     
 
 

Fig. 4 Snowflake configuration in the symmetric case. For the snowflake-plus case, there 
is one first order PF null on the main (enclosing the plasma) separatrix. For the 
snowflake-minus, there are two nulls on the main separatrix.
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Fig.5 Changes of the magnetic configuration: a) asymmetric snowflake-minus; the 
second separatrix is adjacent to the main separatrix on the low-field side; see further 
explanations in the text; b) tilted symmetric snowflake-minus; c) asymmetric snowflake-
plus: there is no second separatrix near the main one.  

 
 

          
 

Fig. 6 The effect of the finite current density in the divertor area: a) zero current density 
(µ=0); b) modest current density (~5% of the current density in the plasma core); c) 
intermediate current density (7.5%); d) high current density (10%). Note that the scale in 
panel b is different from that in three other panels (to better illustrate a small area of 
closed flux surfaces).  
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